Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Anal Biochem ; 659: 114960, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2085839

ABSTRACT

COVID-19 pandemic highlighted the demand for the fast and reliable detection of viral RNA. Although various methods for RNA amplification and detection have been proposed, some limitations, including those caused by reverse transcription (RT), need to be overcome. Here, we report on the direct detection of specific RNA by conventional polymerase chain reaction (PCR) requiring no prior RT step. It was found that Hemo KlenTaq (HKTaq), which is posed as DNA-dependent DNA polymerase, possesses reverse transcriptase activity and provides reproducible amplification of RNA targets with an efficiency comparable to common RT-PCR. Using nasopharyngeal swab extracts from COVID-19-positive patients, the high reliability of SARS-CoV-2 detection based on HKTaq was demonstrated. The most accurate detection of specific targets are provided by nearby primers, which allow to determine RNA in solutions affected to multiple freeze-thaw cycles. HKTaq can be used for elaboration of simplified amplification techniques intended for the analysis of any specific RNA and requiring only one DNA polymerase.


Subject(s)
COVID-19 , RNA, Viral , Humans , Clinical Laboratory Techniques/methods , COVID-19 Testing , Nucleic Acid Amplification Techniques/methods , Pandemics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , RNA, Viral/genetics , RNA, Viral/analysis , RNA-Directed DNA Polymerase/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Taq Polymerase/metabolism
2.
Anal Biochem ; 641: 114565, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1632512

ABSTRACT

Polymerase chain reaction (PCR) is the most widely used method for nucleic acids amplification. To date, a huge number of versatile PCR techniques have been developed. One of the relevant goals is to shorten PCR duration, which can be achieved in several ways. Here, we report on the results regarding nucleic acids amplification by convective PCR (cPCR) in standard 0.2 ml polypropylene microtubes. The following conditions were found to be optimal for such amplification: 1) 70 µl reaction volume, 2) the supply of external temperature 145°Ð¡ for the denaturation zone and 0°Ð¡ for the annealing zone, 3) ∼30° inclination of the microtube main axis, 4) the use of nearby primers, and 5) duration of the reaction 15-20 min. At these conditions, the amplification products are accumulated in an amount sufficient to be registered by gel electrophoresis, and high sensitivity of the reaction comparable to that of conventional PCR is achieved. cPCR provided the reliable detection of SARS-CoV-2 coronavirus RNA isolated from nasopharyngeal swabs of COVID-19 patients.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , COVID-19/diagnosis , Polymerase Chain Reaction/instrumentation , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/methods , Convection , Humans , Polymerase Chain Reaction/economics , Polymerase Chain Reaction/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL